Synthesis of Retinol-Loaded Lipid Nanocarrier via Vacuum Emulsification to Improve Topical Skin Delivery

Polymers (Basel). 2021 Mar 8;13(5):826. doi: 10.3390/polym13050826.

Abstract

Retinol has been widely used as an anti-wrinkle active ingredient in cosmetic fields. However, the oxidation of retinol by air was one of the critical problems for application in the skincare field. In this study, Retinol-loaded lipid nanocarriers were prepared via the vacuum emulsification method to increase the stability of retinol vulnerable to air and optimized encapsulation conditions and to increase the penetration efficiency into skin. Optimizing the components of lipid nanocarriers, gradients of carbon chain C8-22 using various lipid species which made the amorphous structure and enough spaces to load retinol inside the capsules were estimated from the lower enthalpy change and peak shift in DSC analysis. The vacuum-assisted lipid nanocarriers (VLN) could help suppress oxidation, which could have advantages to increase the thermal stability of retinol. The retinol-loaded VLN (VLN-ROL) had narrow size distribution under 0.3 PDI value, under 200 nm scaled particle size, and fully negative surface charge of about -50 mV for the electrostatic repulsion to avoid aggregation phenomenon among the lipid nanoparticles. It maintained 90% or more retinol concentration after 4 weeks of storage at 25, 40 and 50 °C and kept stable. The VLN-ROL-containing cream showed improved penetration efficiency applied to porcine skins compared to the commercial retinol 10S from BASF. The total amount of retinol into the skin of VLN-ROL (0.1% of retinol) was enhanced by about 2.2-fold (2.86 ± 0.23 μg) higher than that in 0.1% of bare retinol (about 1.29 ± 0.09 μg). In addition, applied on a 3D Human skin model, the epidermal thickness and the relative percentage of dermal collagen area effectively increased compared to the control and retinol, respectively. Additionally, the level of secreted IL-1α was lower and epidermal damage was weaker than commercial product A. This retinol-loaded lipid nanocarrier could be a potentially superior material for cosmetics and biomedical research.

Keywords: low inflammatory factors; nanostructured lipid nanocarrier; penetration efficiency; retinol encapsulation; thermal stability; vacuum emulsification.