Design and Comprehensive Characterization of Tetramethylpyrazine (TMP) for Targeted Lung Delivery as Inhalation Aerosols in Pulmonary Hypertension (PH): In Vitro Human Lung Cell Culture and In Vivo Efficacy

Antioxidants (Basel). 2021 Mar 11;10(3):427. doi: 10.3390/antiox10030427.

Abstract

This is the first study reporting on the design and development innovative inhaled formulations of the novel natural product antioxidant therapeutic, tetramethylpyrazine (TMP), also known as ligustrazine. TMP is obtained from Chinese herbs belonging to the class of Ligusticum. It is known to have antioxidant properties. It can act as a Nrf2/ARE activator and a Rho/ROCK inhibitor. The present study reports for the first time on the comprehensive characterization of raw TMP (non-spray dried) and spray dried TMP in a systematic manner using thermal analysis, electron microscopy, optical microscopy, and Raman spectroscopy. The in vitro aerosol dispersion performance of spray dried TMP was tested using three different FDA-approved unit-dose capsule-based human dry powder inhaler devices. In vitro human cellular studies were conducted on pulmonary cells from different regions of the human lung to examine the biocompatibility and non-cytotoxicity of TMP. Furthermore, the efficacy of inhaled TMP as both liquid and dry powder inhalation aerosols was tested in vivo using the monocrotaline (MCT)-induced PH rat model.

Keywords: Nrf2; Rho/ROCK inhibitor; advanced spray drying; antioxidant; ligustrazine; lung vascular disease; monocrotaline (MCT); rat model; respiratory drug delivery.