Imaging methods in mechanosensing: a historical perspective and visions for the future

Mol Biol Cell. 2021 Apr 19;32(9):842-854. doi: 10.1091/mbc.E20-10-0671. Epub 2021 Mar 31.

Abstract

Over the past three decades, as mechanobiology has become a distinct area of study, researchers have developed novel imaging tools to discover the pathways of biomechanical signaling. Early work with substrate engineering and particle tracking demonstrated the importance of cell-extracellular matrix interactions on the cell cycle as well as the mechanical flux of the intracellular environment. Most recently, tension sensor approaches allowed directly measuring tension in cell-cell and cell-substrate interactions. We retrospectively analyze how these various optical techniques progressed the field and suggest our vision forward for a unified theory of cell mechanics, mapping cellular mechanosensing, and novel biomedical applications for mechanobiology.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Biomechanical Phenomena / physiology
  • Biophysics / methods*
  • Biophysics / trends
  • Cell Differentiation
  • Extracellular Matrix / metabolism
  • Humans
  • Mechanotransduction, Cellular / physiology*
  • Optical Imaging / methods*
  • Optical Imaging / trends
  • Signal Transduction