Potential-Dependent Mechanistic Study of Ethanol Electro-oxidation on Palladium

ACS Appl Mater Interfaces. 2021 Apr 14;13(14):16602-16610. doi: 10.1021/acsami.1c04513. Epub 2021 Mar 31.

Abstract

We herein used the density functional theory (DFT) method and the implicit continuum solvation model to study the potential-dependent mechanism of ethanol oxidation reaction (EOR) on palladium (Pd). Energy evolutions of the EOR on low-index Pd surfaces, including (111), (110), and (100), were obtained as a function of the electrode potential. Moreover, the onset potentials for key intermediates and products were calculated. In addition, the potential range for adsorbed ethanol as the most stable adsorption state for proceeding the EOR was determined to be between 0.15 and 0.78 V via the calculated Pourbaix diagrams when considering hydrogen underpotential deposition and Pd(II) oxide formation as competing reactions. Specifically, the behavior of Pd(111) as the dominating facet decided the overall activity of the EOR with onset potentials to acidic acid/acetate at 0.40 V, to carbon dioxide at 0.71 V, and to oxide formation at 0.78 V. Pd(110) was predicted to exhibit the optimal activity toward the EOR with the lowest onset potentials to both the first dehydrogenation process and carbon dioxide at 0.08 and 0.60 V, respectively. A computational potential-dependent mechanism of the EOR was proposed, which agrees well with the experimental curve of linear sweeping voltammetry on the commercial Pd/C electrocatalyst. Our study suggests that targeted control of products can be tuned with proper overpotential and thus provides a foundation for the future development of EOR electrocatalysts.

Keywords: constant electrode potential method; density functional theory; ethanol electro-oxidation; implicit continuum solvation model; palladium.