A Novel Deep Learning Based Computer-Aided Diagnosis System Improves the Accuracy and Efficiency of Radiologists in Reading Biparametric Magnetic Resonance Images of the Prostate: Results of a Multireader, Multicase Study

Invest Radiol. 2021 Oct 1;56(10):605-613. doi: 10.1097/RLI.0000000000000780.

Abstract

Objective: The aim of this study was to evaluate the effect of a deep learning based computer-aided diagnosis (DL-CAD) system on radiologists' interpretation accuracy and efficiency in reading biparametric prostate magnetic resonance imaging scans.

Materials and methods: We selected 100 consecutive prostate magnetic resonance imaging cases from a publicly available data set (PROSTATEx Challenge) with and without histopathologically confirmed prostate cancer. Seven board-certified radiologists were tasked to read each case twice in 2 reading blocks (with and without the assistance of a DL-CAD), with a separation between the 2 reading sessions of at least 2 weeks. Reading tasks were to localize and classify lesions according to Prostate Imaging Reporting and Data System (PI-RADS) v2.0 and to assign a radiologist's level of suspicion score (scale from 1-5 in 0.5 increments; 1, benign; 5, malignant). Ground truth was established by consensus readings of 3 experienced radiologists. The detection performance (receiver operating characteristic curves), variability (Fleiss κ), and average reading time without DL-CAD assistance were evaluated.

Results: The average accuracy of radiologists in terms of area under the curve in detecting clinically significant cases (PI-RADS ≥4) was 0.84 (95% confidence interval [CI], 0.79-0.89), whereas the same using DL-CAD was 0.88 (95% CI, 0.83-0.94) with an improvement of 4.4% (95% CI, 1.1%-7.7%; P = 0.010). Interreader concordance (in terms of Fleiss κ) increased from 0.22 to 0.36 (P = 0.003). Accuracy of radiologists in detecting cases with PI-RADS ≥3 was improved by 2.9% (P = 0.10). The median reading time in the unaided/aided scenario was reduced by 21% from 103 to 81 seconds (P < 0.001).

Conclusions: Using a DL-CAD system increased the diagnostic accuracy in detecting highly suspicious prostate lesions and reduced both the interreader variability and the reading time.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computers
  • Deep Learning*
  • Humans
  • Magnetic Resonance Imaging
  • Male
  • Prostatic Neoplasms* / diagnostic imaging
  • Radiologists
  • Retrospective Studies