Does Patient-specific Functional Pelvic Tilt Affect Joint Contact Pressure in Hip Dysplasia? A Finite-element Analysis Study

Clin Orthop Relat Res. 2021 Aug 1;479(8):1712-1724. doi: 10.1097/CORR.0000000000001737.

Abstract

Background: Although individual and postural variations in the physiologic pelvic tilt affect the acetabular orientation and coverage in patients with hip dysplasia, their effect on the mechanical environment in the hip has not been fully understood. Individual-specific, finite-element analyses that account for physiologic pelvic tilt may provide valuable insight into the contact mechanics of dysplastic hips, which can lead to further understanding of the pathogenesis and improved treatment of this patient population.

Question/purpose: We used finite-element analysis to ask whether there are differences between patients with hip dysplasia and patients without dysplasia in terms of (1) physiologic pelvic tilt, (2) the pelvic position and joint contact pressure, and (3) the morphologic factors associated with joint contact pressure.

Methods: Between 2016 and 2019, 82 patients underwent pelvic osteotomy to treat hip dysplasia. Seventy patients with hip dysplasia (lateral center-edge angle ≥ 0° and < 20° on supine AP pelvic radiographs) were included. Patients with advanced osteoarthritis, femoral head deformity, prior hip or supine surgery, or poor-quality imaging were excluded. Thirty-two patients (32 hips) were eligible to this finite-element analysis study. For control groups, we reviewed 33 female volunteers without a history of hip disease. Individuals with frank or borderline hip dysplasia (lateral center-edge angle < 25°) or poor-quality imaging were excluded. Sixteen individuals (16 hips) were eligible as controls. Two board-certified orthopaedic surgeons measured sagittal pelvic tilt (the angle between the anterior pelvic plane and vertical axis: anterior pelvic plane [APP] angle) and acetabular version and coverage using pelvic radiographs and CT images. Intra- and interobserver reliabilities, evaluated using the kappa value and intraclass correlation coefficient, were good or excellent. We developed individual-specific, finite-element models using pelvic CT images, and performed nonlinear contact analysis to calculate the joint contact pressure on the acetabular cartilage during the single-leg stance with respect to three pelvic positions: standardized (anterior pelvic plane), supine, and standing. We compared physiologic pelvic tilt between patients with and without dysplasia using a t-test or the Wilcoxon rank sum test. A paired t-test or the Wilcoxon signed rank test with a Bonferroni correction was used to compare joint contact pressure between the three pelvic positions. We correlated joint contact pressure with morphologic parameters and pelvic tilt using the Pearson or the Spearman correlation coefficients.

Results: The APP angle in the supine and standing positions varied widely among individuals. It was greater in patients with hip dysplasia than in patients in the control group when in the standing position (3° ± 6° versus -2° ± 8°; mean difference 5° [95% CI 1° to 9°]; p = 0.02) but did not differ between the two groups when supine (8° ± 5° versus 5° ± 7°; mean difference 3° [95% CI 0° to 7°]; p = 0.06). The mean pelvic tilt was 6° ± 5° posteriorly when shifting from the supine to the standing position in patients with hip dysplasia. The median (range) maximum contact pressure was higher in dysplastic hips than in control individuals (in standing position; 7.3 megapascals [MPa] [4.1 to 14] versus 3.5 MPa [2.2 to 4.4]; difference of medians 3.8 MPa; p < 0.001). The median maximum contact pressure in the standing pelvic position was greater than that in the supine position in patients with hip dysplasia (7.3 MPa [4.1to 14] versus 5.8 MPa [3.5 to 12]; difference of medians 1.5 MPa; p < 0.001). Although the median maximum joint contact pressure in the standardized pelvic position did not differ from that in the standing position (7.4 MPa [4.3 to 15] versus 7.3 MPa [4.1 to 14]; difference of medians -0.1 MPa; p > 0.99), the difference in the maximum contact pressure varied from -3.3 MPa to 2.9 MPa, reflecting the wide range of APP angles (mean 3° ± 6° [-11° to 14°]) when standing. The maximum joint contact pressure in the standing position was negatively correlated with the standing APP angle (r = -0.46; p = 0.008) in patients with hip dysplasia.

Conclusion: Based on our findings that individual and postural variations in the physiologic pelvic tilt affect joint contact pressure in the hip, future studies on the pathogenesis of hip dysplasia and joint preservation surgery should not only include the supine or standard pelvic position, but also they need to incorporate the effect of the patient-specific pelvic tilt in the standing position on the biomechanical environment of the hip.

Clinical relevance: We recommend assessing postural change in sagittal pelvic tilt when diagnosing hip dysplasia and planning preservation hip surgery because assessment in a supine or standard pelvic position may overlook alterations in the hip's contact mechanics in the weightbearing positions. Further studies are needed to elucidate the effect of patient-specific functional pelvic tilt on the degeneration process of dysplastic hips, the acetabular reorientation maneuver, and the clinical result of joint preservation surgery.

MeSH terms

  • Acetabulum / diagnostic imaging
  • Acetabulum / physiopathology
  • Adult
  • Biomechanical Phenomena
  • Female
  • Finite Element Analysis
  • Hip / diagnostic imaging
  • Hip / physiopathology
  • Hip Dislocation / diagnostic imaging
  • Hip Dislocation / physiopathology*
  • Hip Dislocation / surgery
  • Hip Joint / diagnostic imaging
  • Hip Joint / physiopathology*
  • Humans
  • Osteotomy
  • Patient-Specific Modeling
  • Pelvis / diagnostic imaging
  • Pelvis / physiopathology*
  • Pelvis / surgery
  • Radiography
  • Range of Motion, Articular
  • Standing Position*
  • Supine Position*
  • Tomography, X-Ray Computed
  • Weight-Bearing