The effect of short and continuous absorbent patch application on local skin temperature underneath

Physiol Meas. 2021 May 12;42(4). doi: 10.1088/1361-6579/abf364.

Abstract

Objective. By attaching absorbent patches to the skin to collect sweat, an increase in local skin temperature (Tsk) underneath the patches seems unavoidable. Yet this effect has not been quantified. The present study investigates the effect of absorbent patch application on localTskunderneath.Approach. Ten healthy participants cycled for 60 min at an exercise intensity relative to their body surface area (40 W.m-2) in three environmental conditions (temperate: 25 °C 45% RH, hot-humid: 33 °C 65% RH and hot-dry: 40 °C 30% RH). The effect of short sweat sampling (i.e. from min 25-30 to min 55-60) onTskwas examined on the right scapula.Tskof the left scapula served as control. The effect of continuous sweat sampling (i.e. four consecutive 15 min periods) onTskwas examined on the right upper arm.Tskof the left upper arm served as control.Main results. Neither short nor continuous application of absorbent sweat patches affectedTskunderneath the patches in the hot-humid and hot-dry condition (P > 0.05). In the temperate condition, continuous application led to a significant increase inTskunderneath the patches during the first and second minute. This increase remained throughout the experiment (1.8 ± 0.6 °C;P < 0.001). Short application of sweat patches did not affect the localTskunderneath (P > 0.05) in the temperate condition.Significance. To avoid a significant increase in localTskunderneath sweat patches, continuous application should be prevented in, especially, a temperate condition. Timely removal of sweat patches should be taken into account during longer periods of collecting sweat in field or laboratories settings.

Keywords: absorbent patch; sweat rate; skin temperature; local.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Body Temperature
  • Body Temperature Regulation
  • Hot Temperature*
  • Humans
  • Skin
  • Skin Temperature*
  • Sweat
  • Sweating