[Advances in metabolic engineering of methylotrophic yeasts]

Sheng Wu Gong Cheng Xue Bao. 2021 Mar 25;37(3):966-979. doi: 10.13345/j.cjb.200645.
[Article in Chinese]

Abstract

Methylotrophic yeasts are considered as promising cell factories for bio-manufacturing due to their several advantages such as tolerance to low pH and high temperature. In particular, their methanol utilization ability may help to establish a methanol biotransformation process, which will expand the substrate resource for bio-refinery and the product portfolio from methanol. This review summarize current progress on engineering methylotrophic yeasts for production of proteins and chemicals, and compare the strengths and weaknesses with the model yeast Saccharomyces cerevisiae. The challenges and possible solutions in metabolic engineering of methylotrophic yeasts are also discussed. With the developing efficient genetic tools and systems biology, the methylotrophic yeasts should play more important roles in future green bio-manufacturing.

甲醇酵母由于独特优点被认为是绿色生物制造的潜在宿主。特别是其天然甲醇利用性能有望建立甲醇生物转化路线,拓展生物炼制底物,具有重要经济价值和环保意义。文中综述了代谢工程改造甲醇酵母合成蛋白质和化学品的最新研究进展,并比较了其与模式生物酿酒酵母作为细胞工厂的优缺点。随后,分析了甲醇酵母代谢工程改造面临的挑战,并展望了潜在解决方案。随着基因操作工具开发和细胞代谢阐释,甲醇酵母将在未来绿色生物制造发挥越来越重要的作用。.

Keywords: gene editing; green bio-manufacturing; metabolic engineering; methanol biotransformation; synthetic biology.

Publication types

  • Review

MeSH terms

  • Metabolic Engineering*
  • Methanol
  • Saccharomyces cerevisiae / genetics
  • Yeasts*

Substances

  • Methanol