3DeeCellTracker, a deep learning-based pipeline for segmenting and tracking cells in 3D time lapse images

Elife. 2021 Mar 30:10:e59187. doi: 10.7554/eLife.59187.

Abstract

Despite recent improvements in microscope technologies, segmenting and tracking cells in three-dimensional time-lapse images (3D + T images) to extract their dynamic positions and activities remains a considerable bottleneck in the field. We developed a deep learning-based software pipeline, 3DeeCellTracker, by integrating multiple existing and new techniques including deep learning for tracking. With only one volume of training data, one initial correction, and a few parameter changes, 3DeeCellTracker successfully segmented and tracked ~100 cells in both semi-immobilized and 'straightened' freely moving worm's brain, in a naturally beating zebrafish heart, and ~1000 cells in a 3D cultured tumor spheroid. While these datasets were imaged with highly divergent optical systems, our method tracked 90-100% of the cells in most cases, which is comparable or superior to previous results. These results suggest that 3DeeCellTracker could pave the way for revealing dynamic cell activities in image datasets that have been difficult to analyze.

Keywords: C. elegans; bioimaging; cell tracking; computational biology; deep learning; neuroscience; quantitative biology; systems biology; zebrafish.

Plain language summary

Microscopes have been used to decrypt the tiny details of life since the 17th century. Now, the advent of 3D microscopy allows scientists to build up detailed pictures of living cells and tissues. In that effort, automation is becoming increasingly important so that scientists can analyze the resulting images and understand how bodies grow, heal and respond to changes such as drug therapies. In particular, algorithms can help to spot cells in the picture (called cell segmentation), and then to follow these cells over time across multiple images (known as cell tracking). However, performing these analyses on 3D images over a given period has been quite challenging. In addition, the algorithms that have already been created are often not user-friendly, and they can only be applied to a specific dataset gathered through a particular scientific method. As a response, Wen et al. developed a new program called 3DeeCellTracker, which runs on a desktop computer and uses a type of artificial intelligence known as deep learning to produce consistent results. Crucially, 3DeeCellTracker can be used to analyze various types of images taken using different types of cutting-edge microscope systems. And indeed, the algorithm was then harnessed to track the activity of nerve cells in moving microscopic worms, of beating heart cells in a young small fish, and of cancer cells grown in the lab. This versatile tool can now be used across biology, medical research and drug development to help monitor cell activities.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain / diagnostic imaging
  • Caenorhabditis elegans / cytology
  • Cell Tracking / instrumentation
  • Cell Tracking / methods*
  • Deep Learning*
  • Heart / diagnostic imaging
  • Image Processing, Computer-Assisted / instrumentation
  • Image Processing, Computer-Assisted / methods*
  • Imaging, Three-Dimensional / instrumentation
  • Imaging, Three-Dimensional / methods*
  • Spheroids, Cellular
  • Time-Lapse Imaging / instrumentation
  • Time-Lapse Imaging / methods*
  • Tumor Cells, Cultured
  • Zebrafish