Cell wall thickness and composition are involved in photosynthetic limitation

J Exp Bot. 2021 May 18;72(11):3971-3986. doi: 10.1093/jxb/erab144.

Abstract

The key role of cell walls in setting mesophyll conductance to CO2 (gm) and, consequently, photosynthesis is reviewed. First, the theoretical properties of cell walls that can affect gm are presented. Then, we focus on cell wall thickness (Tcw) reviewing empirical evidence showing that Tcw varies strongly among species and phylogenetic groups in a way that correlates with gm and photosynthesis; that is, the thicker the mesophyll cell walls, the lower the gm and photosynthesis. Potential interplays of gm, Tcw, dehydration tolerance, and hydraulic properties of leaves are also discussed. Dynamic variations of Tcw in response to the environment and their implications in the regulation of photosynthesis are discussed, and recent evidence suggesting an influence of cell wall composition on gm is presented. We then propose a hypothetical mechanism for the influence of cell walls on photosynthesis, combining the effects of thickness and composition, particularly pectins. Finally, we discuss the prospects for using biotechnology for enhancing photosynthesis by altering cell wall-related genes.

Keywords: CO2 diffusion; Cell wall composition; cell wall thickness; cellulose; hemicellulose; land plants; leaf anatomy; mesophyll conductance; pectin.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Carbon Dioxide* / metabolism
  • Cell Wall / metabolism
  • Mesophyll Cells
  • Photosynthesis*
  • Phylogeny
  • Plant Leaves

Substances

  • Carbon Dioxide

Associated data

  • Dryad/10.5061/dryad.qbzkh18gs