Chemical Bonding in Silicon Carbonyl Complexes

Chemistry. 2021 Jul 21;27(41):10601-10609. doi: 10.1002/chem.202100493. Epub 2021 May 1.

Abstract

Although silylene-carbonyl complexes are known for decades, only recently isolable examples have been accomplished. In this work, the bonding situation is re-evaluated to explain the origins of their remarkable stability within the Kohn-Sham molecular orbital theory framework. It is shown that the chemical bond can be understood as CO interaction with the silylene via a donor-acceptor interaction: a σ-donation from the σCO into the empty p-orbital of silicon, and a π-back donation from the sp2 lone pair of silicon into the π*CO antibonding orbitals. Notably, it was established that the driving force behind the surprisingly stable Si-CO compounds, however, is another π-back donation from a perpendicular bonding R-Si σ-orbital into the π*CO antibonding orbitals. Consequently, the pyramidalization of the central silicon atom cannot be associated with the strength of the π-back donation, in sharp contrast to the established chemical bonding model. Considering this additional bonding interaction not only shed light on the bonding situation, but is also an indispensable key for broadening the scope of silylene-carbonyl chemistry.

Keywords: carbonyl complexes; chemical bonding; donor-acceptor; energy decomposition analysis; silylenes.