Body-Mounted Robotics for Interventional MRI Procedures

IEEE Trans Med Robot Bionics. 2020 Nov;2(4):557-560. doi: 10.1109/tmrb.2020.3030532. Epub 2020 Oct 13.

Abstract

This paper reports the development and initial cadaveric evaluation of a robotic framework for MRI-guided interventions using a body-mounted approach. The framework is developed based on modular design principles. The framework consists of a body-mounted needle placement manipulator, robot control software, robot controller, interventional planning workstation, and MRI scanner. The framework is modular in the sense that all components are connected independently, making it readily extensible and reconfigurable for supporting the clinical workflow of various interventional MRI procedures. Based on this framework we developed two body-mounted robots for musculoskeletal procedures. The first robot is a four-degree of freedom system called ArthroBot for shoulder arthrography in pediatric patients. The second robot is a six-degree of freedom system called PainBot for perineural injections used to treat pain in adult and pediatric patients. Body-mounted robots are designed with compact and lightweight structure so that they can be attached directly to the patient, which minimizes the effect of patient motion by allowing the robot to move with the patient. A dedicated clinical workflow is proposed for the MRI-guided musculoskeletal procedures using body-mounted robots. Initial cadaveric evaluations of both systems were performed to verify the feasibility of the systems and validate the clinical workflow.

Keywords: MRI-guided intervention; arthrography; body-mounted robot; chronic pain management; musculoskeletal procedure.