Fabricating intramolecular donor-acceptor system via covalent bonding of carbazole to carbon nitride for excellent photocatalytic performance towards CO2 conversion

J Colloid Interface Sci. 2021 Jul 15:594:550-560. doi: 10.1016/j.jcis.2021.02.105. Epub 2021 Mar 9.

Abstract

Photocatalytic conversion of CO2 into hydrocarbon fuels is an ideal technology of mitigating greenhouse effect caused by excessive emission of CO2. However, the high recombination rate of electron-hole pairs and limited charge carriers transport speed constrained the catalytic performance of many semiconductor catalysts. In this contribution, a series of carbon nitride (g-CN) samples with intramolecular donor-acceptor (D-A) system were successfully prepared by introducing organic donor into their structures. Characterization results confirmed that carbazole was successful connected to the structure of g-CN via chemical bond. The formation of intramolecular D-A system greatly enlarged the light response region of g-CN-xDbc. In addition, a new charge transfer transition mode was formed in g-CN-0.01Dbc due to the incorporation carbazole, which enable it to use light with energy lower than the intrinsic absorption of g-CN. Meanwhile, the D-A structure led to the spatial separation of electrons and holes in g-CN-xDbc and significantly decreased the recombination rate of electron-hole pairs. The g-CN-0.01Dbc presented the best catalytic performance and the CO evolution rate was 9.6 times higher than that of g-CN. Moreover, the reaction was performed in water without any additive, which made it green and sustainable. DFT simulation confirmed the D-A structure and charge carrier migration direction in the prepared samples.

Keywords: CO(2) reduction; Carbon nitride; Covalent bonded; Donor-acceptor; Photocatalysis.