Vapochromism and Magnetochemical Switching of a Nickel(II) Paddlewheel Complex by Reversible NH3 Uptake and Release

Angew Chem Int Ed Engl. 2021 Jun 7;60(24):13401-13404. doi: 10.1002/anie.202102149. Epub 2021 May 7.

Abstract

Reaction of [NiCl2 (PnH)4 ] (1) (PnH=6-tert-butyl-pyridazine-3-thione) with NiCl2 affords the binuclear paddlewheel (PW) complex [Ni2 (Pn)4 ] (2). Diamagnetic complex 2 is the first example of a PW complex capable of reversibly binding and releasing NH3 . The NH3 ligand in [Ni2 (Pn)4 (NH3 )] (2⋅NH3 ) enforces major spectroscopic and magnetic susceptibility changes, thus displaying vapochromic properties (λmax (2)=532 nm, λmax (2⋅NH3 )=518 nm) and magnetochemical switching (2: S=0; 2⋅NH3 : S=1). Upon repeated adsorption/desorption cycles of NH3 the PW core remains intact. Compound 2 can be embedded into thin polyurethane films (2P ) under retention of its sensing abilities. Therefore, 2 qualifies as reversible optical probe for ammonia. The magnetochemical switching of 2 and 2⋅NH3 was studied in detail by SQUID measurements showing that in 2⋅NH3 , solely the Ni atom coordinated the NH3 molecule is responsible for the paramagnetic behavior.

Keywords: ammonia; nickel complexes; paddlewheel complexes; spin-state switching; vapochromism.

Publication types

  • Research Support, Non-U.S. Gov't