Effective Deep Attributed Network Representation Learning With Topology Adapted Smoothing

IEEE Trans Cybern. 2022 Jul;52(7):5935-5946. doi: 10.1109/TCYB.2021.3064092. Epub 2022 Jul 4.

Abstract

Attributed networks are ubiquitous in the real world, such as social networks. Therefore, many researchers take the node attributes into consideration in the network representation learning to improve the downstream task performance. In this article, we mainly focus on an untouched "oversmoothing" problem in the research of the attributed network representation learning. Although the Laplacian smoothing has been applied by the state-of-the-art works to learn a more robust node representation, these works cannot adapt to the topological characteristics of different networks, thereby causing the new oversmoothing problem and reducing the performance on some networks. In contrast, we adopt a smoothing parameter that is evaluated from the topological characteristics of a specified network, such as small worldness or node convergency and, thus, can smooth the nodes' attribute and structure information adaptively and derive both robust and distinguishable node features for different networks. Moreover, we develop an integrated autoencoder to learn the node representation by reconstructing the combination of the smoothed structure and attribute information. By observation of extensive experiments, our approach can preserve the intrinsical information of networks more effectively than the state-of-the-art works on a number of benchmark datasets with very different topological characteristics.