Hotspot analysis of spatial distribution of algae blooms in small and medium water bodies

Environ Monit Assess. 2021 Mar 24;193(4):221. doi: 10.1007/s10661-021-08944-z.

Abstract

Intensive land use favors eutrophication processes and algae bloom proliferation in freshwaters, which is considered to be one of the main environmental issues worldwide. In general, and particularly in South America, inland water monitoring only covers the main water bodies due to the high costs and efforts involved. In order to improve the coverage of spatial and temporal of algae bloom monitoring, remote sensing serves as an alternative tool. Thereby, the analysis of significant spatial clusters of high values (hotspots) and low values (coldspots) of chlorophyll-a has been applied in coastal studies; however, at present, there are no studies in freshwaters. In this study, Getis-Ord Gi* hotspot analysis was applied to detect spatial distribution patterns of algae bloom dynamics in small- and medium-sized freshwater bodies. Four in situ samplings were carried out in five suburban lakes of Uruguay, in agreement with the satellite capture. Total and cyanobacterial chlorophyll-a concentration, and suspended solids were evaluated. Linear models were developed by combining pre-established indexes with additional Sentinel-2 spectral bands and in situ data. The relationship between red and red edge regions allowed mapping the chlorophyll-a in the study lakes with an adjustment of R2 = 0.83. Hotspot analysis was performed with the selected linear model, and significant chlorophyll-a variability within each lake was successfully detected. The novel application of hotspots analyses presented in this work represents a contribution to advance knowledge in the remote detection of algae bloom dynamics and improve monitoring capabilities of inland water bodies.

Keywords: Chlorophyll-a; Cyanobacteria; Eutrophication; Remote sensing; Sentinel-2; Space pattern.

MeSH terms

  • Environmental Monitoring*
  • Eutrophication*
  • Lakes
  • South America
  • Uruguay
  • Water

Substances

  • Water