Control and readout of a superconducting qubit using a photonic link

Nature. 2021 Mar;591(7851):575-579. doi: 10.1038/s41586-021-03268-x. Epub 2021 Mar 24.

Abstract

Delivering on the revolutionary promise of a universal quantum computer will require processors with millions of quantum bits (qubits)1-3. In superconducting quantum processors4, each qubit is individually addressed with microwave signal lines that connect room-temperature electronics to the cryogenic environment of the quantum circuit. The complexity and heat load associated with the multiple coaxial lines per qubit limits the maximum possible size of a processor to a few thousand qubits5. Here we introduce a photonic link using an optical fibre to guide modulated laser light from room temperature to a cryogenic photodetector6, capable of delivering shot-noise-limited microwave signals directly at millikelvin temperatures. By demonstrating high-fidelity control and readout of a superconducting qubit, we show that this photonic link can meet the stringent requirements of superconducting quantum information processing7. Leveraging the low thermal conductivity and large intrinsic bandwidth of optical fibre enables the efficient and massively multiplexed delivery of coherent microwave control pulses, providing a path towards a million-qubit universal quantum computer.

Publication types

  • Research Support, Non-U.S. Gov't