Catalytic photooxygenation degrades brain Aβ in vivo

Sci Adv. 2021 Mar 24;7(13):eabc9750. doi: 10.1126/sciadv.abc9750. Print 2021 Mar.

Abstract

Protein degradation induced by small molecules by recruiting endogenous protein degradation systems, such as ubiquitin-proteasome systems, to disease-related proteins is an emerging concept to inhibit the function of undruggable proteins. Protein targets without reliable ligands and/or existing outside the cells where ubiquitin-proteasome systems do not exist, however, are beyond the scope of currently available protein degradation strategies. Here, we disclose photooxygenation catalyst 7 that permeates the blood-brain barrier and selectively and directly degrades an extracellular Alzheimer's disease-related undruggable protein, amyloid-β protein (Aβ). Key was the identification of a compact but orange color visible light-activatable chemical catalyst whose activity can be switched on/off according to its molecular mobility, thereby ensuring high selectivity for aggregated Aβ. Chemical catalyst-promoted protein degradation can be applied universally for attenuating extracellular amyloids and various pathogenic proteins and is thus a new entry to induced protein degradation strategies.

Publication types

  • Research Support, Non-U.S. Gov't