Recovering wasted nutrients from shrimp farming through the combined culture of polychaetes and halophytes

Sci Rep. 2021 Mar 23;11(1):6587. doi: 10.1038/s41598-021-85922-y.

Abstract

The bioremediation and biomass production of organic extractive organisms (polychaetes Arenicola marina, Hediste diversicolor and halophyte Salicornia ramosissima) was assessed in an integrated multi-trophic aquaculture (IMTA) framework. Culture trials were performed outdoors using the nutient rich effluent from a shrimp farm employing recirculated aquaculture systems. Similar bioremediation efficiencies were obtained in cultures using a single polyculture tank (1 T) or two trophic levels separated tanks (2 T; ≈ 0.3 and 0.6 m2 operational area, respectively), with a reduction of 74-87% for particulate organic matter (POM), 56-64% for dissolved inorganic nitrogen (DIN) and 60-65% for dissolved inorganic phosphorus (DIP). Hediste diversicolor adapted well to culture conditions, reaching densities up to 5.000 ind. m-2 (≈ 78-98 g m-2). Arenicola marina failed to cope with water temperature that exceeded the species thermal limits, displaying a survival < 10% (20 °C often pointed as the maximum thermal threshold for this species). Productivity of S. ramosissima with 1 T was about twice that obtained with 2 T (≈ 150-170 and ≈ 60-90 g FW m-2 edible aboveground biomass, respectively). The yellowish coloration of cultured plants was likely due to the chemical oxidation and rapid sand filtration pre-treatment applied to the brackish groundwater used in the aquaculture facility, that removed iron (and probably other essential elements). Overall, 1 T design combining H. diversicolor and S. ramosissima displayed the best bioremediation performance and biomass production, while also allowing reducing in half the operational area required to implement this IMTA framework.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biodegradation, Environmental
  • Biotechnology / methods*
  • Chenopodiaceae / metabolism*
  • Decapoda / chemistry*
  • Polychaeta / metabolism*
  • Salt-Tolerant Plants / metabolism*
  • Waste Products*

Substances

  • Waste Products