Two-Photon Absorption Activity of BOPHY Derivatives: Insights from Theory

J Phys Chem A. 2021 Apr 1;125(12):2581-2587. doi: 10.1021/acs.jpca.1c00756. Epub 2021 Mar 23.

Abstract

We present a theoretical study of a two-photon absorption (2PA) process in dipolar and quadrupolar systems containing two BF2 units. For this purpose, we considered 13 systems studied by Ponce-Vargas et al. [ J. Phys. Chem. B 2017, 121, 10850-10858] and performed linear and quadratic response theory calculations based on the RI-CC2 method to obtain the 2PA parameters. Furthermore, using the recently developed generalized few-state model, we provided an in-depth view of the changes in 2PA properties in the molecules considered. Our results clearly indicate that suitable electron-donating group substitution to the core BF2 units results in a large red-shift of the two-photon absorption wavelength, thereby entering into the desired biological window. Furthermore, the corresponding 2PA strength also increases significantly (up to 30-fold). This makes the substituted systems a potential candidate for biological imaging.