SPAAC-NAD-seq, a sensitive and accurate method to profile NAD+-capped transcripts

Proc Natl Acad Sci U S A. 2021 Mar 30;118(13):e2025595118. doi: 10.1073/pnas.2025595118.

Abstract

Nicotinamide adenine diphosphate (NAD+) is a novel messenger RNA 5' cap in Escherichia coli, yeast, mammals, and Arabidopsis Transcriptome-wide identification of NAD+-capped RNAs (NAD-RNAs) was accomplished through NAD captureSeq, which combines chemoenzymatic RNA enrichment with high-throughput sequencing. NAD-RNAs are enzymatically converted to alkyne-RNAs that are then biotinylated using a copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Originally applied to E. coli RNA, which lacks the m7G cap, NAD captureSeq was then applied to eukaryotes without extensive verification of its specificity for NAD-RNAs vs. m7G-capped RNAs (m7G-RNAs). In addition, the Cu2+ ion in the CuAAC reaction causes RNA fragmentation, leading to greatly reduced yield and loss of full-length sequence information. We developed an NAD-RNA capture scheme utilizing the copper-free, strain-promoted azide-alkyne cycloaddition reaction (SPAAC). We examined the specificity of CuAAC and SPAAC reactions toward NAD-RNAs and m7G-RNAs and found that both prefer the former, but also act on the latter. We demonstrated that SPAAC-NAD sequencing (SPAAC-NAD-seq), when combined with immunodepletion of m7G-RNAs, enables NAD-RNA identification with accuracy and sensitivity, leading to the discovery of new NAD-RNA profiles in Arabidopsis Furthermore, SPAAC-NAD-seq retained full-length sequence information. Therefore, SPAAC-NAD-seq would enable specific and efficient discovery of NAD-RNAs in prokaryotes and, when combined with m7G-RNA depletion, in eukaryotes.

Keywords: NAD; NAD captureSeq; NAD-RNA; SPAAC-NAD-seq; m7G-RNA.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / genetics*
  • Cycloaddition Reaction
  • Gene Expression Profiling / methods*
  • NAD*
  • RNA Caps / chemistry*
  • RNA Caps / genetics*
  • RNA-Seq / methods*
  • Transcription, Genetic

Substances

  • RNA Caps
  • NAD