Calibration and characteristics of an electrowetting laser scanner

IEEE Sens J. 2020 Apr 1;20(7):3496-3503. doi: 10.1109/jsen.2019.2959792. Epub 2019 Dec 16.

Abstract

We present a calibration method to correct for fabrication variations and optical misalignment in a two-dimensional electrowetting scanner. These scanners are an attractive option due to being transmissive, nonmechanical, having a large scan angle (±13.7°), and low power consumption (μW). Fabrication imperfections lead to non-uniform deposition of the dielectric or hydrophobic layer which results in actuation inconsistency of each electrode. To demonstrate our calibration method, we scan a 5 × 5 grid target using a four-electrode electrowetting prism and observe a pincushion type optical distortion in the imaging plane. Zemax optical simulations verify that the symmetric distortion is due to the projection of a radial scanning surface onto a flat imaging plane, while in experiment we observe asymmetrical distortion due to optical misalignment and fabrication imperfections. By adjusting the actuation voltages through an iterative Delaunay triangulation interpolation method, the distortion is corrected and saw an improvement in the mean error across 25 grid points from 43 μm (0.117°) to 10 μm (0.027°).

Keywords: Calibration; Electrowetting; Laser scanner; Scanning characteristic.