[Temporal Trend of Polycyclic Aromatic Hydrocarbons in Atmosphere Within 24 Hours After Snowfall]

Huan Jing Ke Xue. 2021 Apr 8;42(4):1636-1641. doi: 10.13227/j.hjkx.202008047.
[Article in Chinese]

Abstract

The atmosphere is a significant medium for the transportation and diffusion of volatile and semi-volatile pollutants. Furthermore, the atmosphere is the primary exposure route for pollutants to enter the human body. Therefore, the study of the environmental fate of pollutants in the atmosphere is essential. In this study, 16 polycyclic aromatic hydrocarbons (PAHs) were analyzed in snow samples and air samples within 24 hours after a snowfall, and the temporal trend of PAHs in the atmosphere was comprehensively studied. The results indicated that the detection rate of the 16 PAHs in snow was 100%, and the concentration of phenanthrene (538.3 ng·L-1) was the highest, followed by naphthalene (509.1 ng·L-1) and fluoranthene (429.9 ng·L-1), indicating that snowfall can remove PAHs from the atmosphere. After the snowfall, a falling-rising-falling temporal trend of the concentrations of PAHs in the atmosphere was observed. Higher concentrations appeared during rush hour, with the largest automobile exhaust emissions, while lower concentrations appeared during periods with the lowest human activity. The results indicated that the atmospheric concentrations of PAHs were predominantly influenced by human activities. Within 24 hours after snowfall, the ratio of PAHs between the gas phase and particle phase, which depends primarily on the physical and chemical properties of PAHs, had not changed substantially. The diagnostic ratios indicated that within 24 hours after snowfall, the PAHs in the atmosphere originated mostly from the emissions of solid fuel and liquid fuel combustion.

Keywords: atmosphere; pollution characteristic; polycyclic aromatic hydrocarbons (PAHs); snowfall; temporal trend.

Publication types

  • English Abstract