Spatial and temporal dynamics of space use by free-ranging domestic dogs Canis familiaris in rural Africa

Ecol Appl. 2021 Jul;31(5):e02328. doi: 10.1002/eap.2328. Epub 2021 May 9.

Abstract

Variation in the spatial ecology of animals influences the transmission of infections and so understanding host behavior can improve the control of diseases. Despite the global distribution of free-ranging domestic dogs Canis familiaris and their role as reservoirs for zoonotic diseases, little is known about the dynamics of their space use. We deployed GPS loggers on owned but free-ranging dogs from six villages in rural Chad, and tracked the movements of 174 individuals in the dry season and 151 in the wet season. We calculated 95% and core home ranges using auto-correlated kernel density estimates (AKDE95 and AKDEcore ), determined the degree to which their movements were predictable, and identified correlates of movement patterns. The median AKDE95 range in the dry season was 0.54 km2 and in the wet season was 0.31 km2 , while the median AKDEcore range in the dry season was 0.08 km2 and in the wet season was 0.04 km2 . Seasonal variation was, in part, related to owner activities; dogs from hunting households had ranges that were five times larger in the dry season. At least 70% of individuals were more predictably "at home" (<50 m from the household) throughout the day in the dry season, 80% of dogs demonstrated periodicity in activity levels (speed), and just over half the dogs exhibited periodicity in location (repeated space use). In the wet season, dogs mostly exhibited 24-h cycles in activity and location, with peaks at midday. In the dry season, dogs exhibited both 12- and 24-h cycles, with either a single peak at midday, or one peak between 06:00 and 12:00 and a second between 18:00 and 22:00. Strategies to control canine-mediated zoonoses can be improved by tailoring operations to the local spatial ecology of free-ranging dogs. Interventions using a door-to-door strategy in rural Chad would best conduct operations during the dry season, when access to dogs around their household more reliably exceeds 70% throughout the day. Given the importance of use in hunting for explaining variation in dog space-use, targeting approaches to disease control at the household level on the basis of owner activities offers potential to improve access to dogs.

Keywords: Canis familiaris; Chad; Guinea worm; disease ecology; disease management; domestic dog; dracunculiasis; home range; neglected tropical diseases; periodicity; rabies; zoonosis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Africa
  • Animals
  • Dog Diseases*
  • Dogs
  • Ecology
  • Homing Behavior
  • Zoonoses