Controlling Oxygen Reduction Selectivity through Steric Effects: Electrocatalytic Two-Electron and Four-Electron Oxygen Reduction with Cobalt Porphyrin Atropisomers

Angew Chem Int Ed Engl. 2021 Jun 1;60(23):12742-12746. doi: 10.1002/anie.202102523. Epub 2021 Apr 16.

Abstract

Achieving a selective 2 e- or 4 e- oxygen reduction reaction (ORR) is critical but challenging. Herein, we report controlling ORR selectivity of Co porphyrins by tuning only steric effects. We designed Co porphyrin 1 with meso-phenyls each bearing a bulky ortho-amido group. Due to the resulted steric hinderance, 1 has four atropisomers with similar electronic structures but dissimilar steric effects. Isomers αβαβ and αααα catalyze ORR with n=2.10 and 3.75 (n is the electron number transferred per O2 ), respectively, but ααββ and αααβ show poor selectivity with n=2.89-3.10. Isomer αβαβ catalyzes 2 e- ORR by preventing a bimolecular O2 activation path, while αααα improves 4 e- ORR selectivity by improving O2 binding at its pocket, a feature confirmed by spectroscopy methods, including O K-edge near-edge X-ray absorption fine structure. This work represents an unparalleled example to improve 2 e- and 4 e- ORR by tuning only steric effects without changing molecular and electronic structures.

Keywords: atropisomers; molecular electrocatalysis; oxygen reduction; selectivity control; steric effect.