Six catalytic activities and cytotoxicity of immunoglobulin G and secretory immunoglobulin A from human milk

J Dairy Sci. 2021 Jun;104(6):6431-6448. doi: 10.3168/jds.2020-19897. Epub 2021 Mar 23.

Abstract

In the milk of healthy women, antibodies were found with different catalytic activities (abzymes), which are absent in the sera of other healthy people. Moreover, it was previously shown that DNase antibodies-abzymes of patients with autoimmune diseases are cytotoxic to cancer cells. In this work, it was first shown that IgG and secretory IgA (sIgA) do not possess embryotoxicity; they practically do not affect the development of fertilized eggs of sea urchins but demonstrate sperm toxicity. After addition to the eggs of sperm preincubated with IgG and sIgA, the number of unfertilized eggs was increased, in the case of sIgA 1.6-fold higher than that for IgG. The suppression of the growth of MCF-7 breast cancer cells by sIgA was 2.2 times more effective than with IgG antibodies. The relative enzymatic activity of milk sIgA was higher than IgG (-fold): 1.9 (DNase), 4.6 (amylase), 1.7 (peroxidase), 1.3 (protease), 3.7 [hydrolysis of poly(C)], 3.3 [hydrolysis of poly(U)], and 1.7 (oxidation of 3,3'-diaminobenzidine). One of the possible reasons for the observed difference between sIgA and IgG could be that all 6 catalytic activities of sIgA were, on average, 2.6 times higher than that for IgG. Correlation coefficients between all the relative 6 enzymatic activities of IgG and sIgA and their toxicity to sea urchin sperm and to cancer cells were calculated. Maximum correlation coefficients were observed for DNase (+0.71), protease (+0.64) activities for sIgA, as well as protease (+0.59) and RNase (+0.77) of IgG with their toxicity toward sperm. The correlation coefficients were also high between peroxidase activity (+0.85) of sIgA and poly(U) hydrolysis by IgG (+0.58) with their suppression of tumor cell growth. It has been suggested that the catalytic activities of abzymes may be important in the manifestation of their sperm toxicity and inhibition of cancer cell growth.

Keywords: cytotoxicity toward tumor cells; embryotoxicity; human milk IgG and sIgA abzymes; sperm toxicity.

MeSH terms

  • Animals
  • Antibodies, Catalytic*
  • Humans
  • Hydrolysis
  • Immunoglobulin A
  • Immunoglobulin A, Secretory*
  • Immunoglobulin G
  • Milk, Human

Substances

  • Antibodies, Catalytic
  • Immunoglobulin A
  • Immunoglobulin A, Secretory
  • Immunoglobulin G