Resident bacteria contribute to opportunistic infections of the respiratory tract

PLoS Pathog. 2021 Mar 19;17(3):e1009436. doi: 10.1371/journal.ppat.1009436. eCollection 2021 Mar.

Abstract

Opportunistic pathogens frequently cause volatile infections in hosts with compromised immune systems or a disrupted normal microbiota. The commensalism of diverse microorganisms contributes to colonization resistance, which prevents the expansion of opportunistic pathogens. Following microbiota disruption, pathogens promptly adapt to altered niches and obtain growth advantages. Nevertheless, whether and how resident bacteria modulate the growth dynamics of invasive pathogens and the eventual outcome of such infections are still unclear. Here, we utilized birds as a model animal and observed a resident bacterium exacerbating the invasion of Avibacterium paragallinarum (previously Haemophilus paragallinarum) in the respiratory tract. We first found that negligibly abundant Staphylococcus chromogenes, rather than Staphylococcus aureus, played a dominant role in Av. paragallinarum-associated infectious coryza in poultry based on epidemic investigations and in vitro analyses. Furthermore, we determined that S. chromogenes not only directly provides the necessary nutrition factor nicotinamide adenine dinucleotide (NAD+) but also accelerates its biosynthesis and release from host cells to promote the survival and growth of Av. paragallinarum. Last, we successfully intervened in Av. paragallinarum-associated infections in animal models using antibiotics that specifically target S. chromogenes. Our findings show that opportunistic pathogens can hijack commensal bacteria to initiate infection and expansion and suggest a new paradigm to ameliorate opportunistic infections by modulating the dynamics of resident bacteria.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anti-Infective Agents / pharmacology
  • Chickens
  • Haemophilus Infections / microbiology
  • Haemophilus paragallinarum / drug effects
  • Haemophilus paragallinarum / pathogenicity
  • Microbiota
  • Opportunistic Infections / microbiology*
  • Poultry Diseases / microbiology*
  • Respiratory System / microbiology*
  • Respiratory Tract Infections / microbiology
  • Respiratory Tract Infections / veterinary*
  • Staphylococcus / drug effects

Substances

  • Anti-Infective Agents

Supplementary concepts

  • Staphylococcus chromogenes

Grants and funding

The work was supported by the National Key Research and Development Program of China (2018YFD0500106, G.Z.) and National Natural Science Foundation of China (31922083, K.Z.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.