Withanone from Withania somnifera Attenuates SARS-CoV-2 RBD and Host ACE2 Interactions to Rescue Spike Protein Induced Pathologies in Humanized Zebrafish Model

Drug Des Devel Ther. 2021 Mar 11:15:1111-1133. doi: 10.2147/DDDT.S292805. eCollection 2021.

Abstract

Purpose: SARS-CoV-2 engages human ACE2 through its spike (S) protein receptor binding domain (RBD) to enter the host cell. Recent computational studies have reported that withanone and withaferin A, phytochemicals found in Withania somnifera, target viral main protease (MPro) and host transmembrane TMPRSS2, and glucose related protein 78 (GRP78), respectively, implicating their potential as viral entry inhibitors. Absence of specific treatment against SARS-CoV-2 infection has encouraged exploration of phytochemicals as potential antivirals.

Aim: This study aimed at in silico exploration, along with in vitro and in vivo validation of antiviral efficacy of the phytochemical withanone.

Methods: Through molecular docking, molecular dynamic (MD) simulation and electrostatic energy calculation the plausible biochemical interactions between withanone and the ACE2-RBD complex were investigated. These in silico observations were biochemically validated by ELISA-based assays. Withanone-enriched extract from W. somnifera was tested for its ability to ameliorate clinically relevant pathological features, modelled in humanized zebrafish through SARS-CoV-2 recombinant spike (S) protein induction.

Results: Withanone bound efficiently at the interacting interface of the ACE2-RBD complex and destabilized it energetically. The electrostatic component of binding free energies of the complex was significantly decreased. The two intrachain salt bridge interactions (K31-E35) and the interchain long-range ion-pair (K31-E484), at the ACE2-RBD interface were completely abolished by withanone, in the 50 ns simulation. In vitro binding assay experimentally validated that withanone efficiently inhibited (IC50=0.33 ng/mL) the interaction between ACE2 and RBD, in a dose-dependent manner. A withanone-enriched extract, without any co-extracted withaferin A, was prepared from W. somnifera leaves. This enriched extract was found to be efficient in ameliorating human-like pathological responses induced in humanized zebrafish by SARS-CoV-2 recombinant spike (S) protein.

Conclusion: In conclusion, this study provided experimental validation for computational insight into the potential of withanone as a potent inhibitor of SARS-CoV-2 coronavirus entry into the host cells.

Keywords: ACE2-RBD complex; ELISA; SARS-CoV-2 S-protein; Withania somnifera; docking and MD simulation; humanized zebrafish model; withanone.

Publication types

  • Video-Audio Media

MeSH terms

  • A549 Cells
  • Angiotensin-Converting Enzyme 2 / metabolism*
  • Animals
  • Antiviral Agents / chemistry
  • Antiviral Agents / isolation & purification
  • Antiviral Agents / pharmacology*
  • COVID-19 / enzymology
  • COVID-19 / virology
  • COVID-19 Drug Treatment*
  • Disease Models, Animal
  • Endoplasmic Reticulum Chaperone BiP
  • Female
  • Host-Pathogen Interactions
  • Humans
  • Male
  • Molecular Docking Simulation
  • Molecular Dynamics Simulation
  • Protein Interaction Domains and Motifs
  • SARS-CoV-2 / drug effects*
  • SARS-CoV-2 / metabolism
  • SARS-CoV-2 / pathogenicity
  • Spike Glycoprotein, Coronavirus / chemistry
  • Spike Glycoprotein, Coronavirus / metabolism*
  • Static Electricity
  • Structure-Activity Relationship
  • Virus Internalization / drug effects
  • Withania* / chemistry
  • Withanolides / chemistry
  • Withanolides / isolation & purification
  • Withanolides / pharmacology*
  • Zebrafish

Substances

  • Antiviral Agents
  • Endoplasmic Reticulum Chaperone BiP
  • HSPA5 protein, human
  • Spike Glycoprotein, Coronavirus
  • Withanolides
  • spike protein, SARS-CoV-2
  • Angiotensin-Converting Enzyme 2
  • withanone

Grants and funding

This research received no external funding. This presented work has been conducted using internal research funds from the Patanjali Research Foundation Trust, Hardwar, India.