Morphological Transitions of a Photoswitchable Aramid Amphiphile Nanostructure

Nano Lett. 2021 Apr 14;21(7):2912-2918. doi: 10.1021/acs.nanolett.0c05048. Epub 2021 Mar 18.

Abstract

Self-assembly of small amphiphilic molecules in water can lead to nanostructures of varying geometries with pristine internal molecular organization. Here we introduce a photoswitchable aramid amphiphile (AA), designed to exhibit extensive hydrogen bonding and robust mechanical properties upon self-assembly, while containing a vinylnitrile group for photoinduced cis-trans isomerization. We demonstrate spontaneous self-assembly of the vinylnitrile-containing AA in water to form nanoribbons. Upon UV irradiation, trans-to-cis isomerizations occur concomitantly with a morphological transition from nanoribbons to nanotubes. The nanotube structure persists in water for over six months, stabilized by strong and collective intermolecular interactions. We demonstrate that the nanoribbon-to-nanotube transition is reversible upon heating and that switching between states can be achieved repeatedly. Finally, we use electron microscopy to capture the transition and propose mechanisms for nanoribbon-to-nanotube rearrangement and vice versa. The stability and switchability of photoresponsive AA nanostructures make them viable for a range of future applications.

Keywords: Small-molecule self-assembly; aramid amphiphile; nanoribbon; nanotube; photoisomerization.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.