The pigeon pea CcCIPK14-CcCBL1 pair positively modulates drought tolerance by enhancing flavonoid biosynthesis

Plant J. 2021 Jun;106(5):1278-1297. doi: 10.1111/tpj.15234. Epub 2021 May 24.

Abstract

Calcineurin B-like (CBL)-interacting protein kinases (CIPKs) play a central role in Ca2+ signalling and promote drought tolerance in plants. The CIPK gene family in pigeon pea (Cajanus cajan L.), a major food crop affected by drought, has not previously been characterised. Here, we identified 28 CIPK genes in the pigeon pea genome. Five CcCIPK genes were strongly upregulated in roots upon drought treatment and were selected for further characterisation. Overexpression of CcCIPK13 and CcCIPK14 increased survival rates by two- to three-fold relative to controls after 14 days of drought. Furthermore, the three major flavonoids, genistin, genistein and apigenin, were significantly upregulated in the same transgenic plants. Using CcCIPK14 as bait, we performed a yeast two-hybrid screen and identified six interactors, including CcCBL1. CcCIPK14 exhibited autophosphorylation and phosphorylation of CcCBL1 in vitro. CcCBL1-overexpressed plants displayed higher survival rates upon drought stress as well as higher expression of flavonoid biosynthetic genes and flavonoid content. CcCIPK14-overexpressed plants in which CcCBL1 transcript levels were reduced by RNA interference had lower survival rates, which indicated CcCBL1 in the same pathway as CcCIPK14. Together, our results demonstrate a role for the CcCIPK14-CcCBL1 complex in drought stress tolerance through the regulation of flavonoid biosynthesis in pigeon pea.

Keywords: CBL; CIPK; drought stress; flavonoids; pigeon pea; yeast two-hybrid.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apigenin / metabolism
  • Cajanus / enzymology
  • Cajanus / genetics*
  • Cajanus / physiology
  • Calcium Signaling*
  • Calcium-Binding Proteins / genetics
  • Calcium-Binding Proteins / metabolism*
  • Droughts
  • Flavonoids / metabolism*
  • Gene Expression
  • Gene Expression Regulation, Plant*
  • Genistein / metabolism
  • Isoflavones / metabolism
  • Phosphorylation
  • Plant Proteins / genetics
  • Plant Proteins / metabolism
  • Plant Roots / enzymology
  • Plant Roots / genetics
  • Plant Roots / physiology
  • Plants, Genetically Modified
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism*
  • RNA Interference
  • Stress, Physiological
  • Two-Hybrid System Techniques

Substances

  • Calcium-Binding Proteins
  • Flavonoids
  • Isoflavones
  • Plant Proteins
  • genistin
  • Apigenin
  • Genistein
  • Protein Serine-Threonine Kinases