Enteric glial biology, intercellular signalling and roles in gastrointestinal disease

Nat Rev Gastroenterol Hepatol. 2021 Aug;18(8):571-587. doi: 10.1038/s41575-021-00423-7. Epub 2021 Mar 17.

Abstract

One of the most transformative developments in neurogastroenterology is the realization that many functions normally attributed to enteric neurons involve interactions with enteric glial cells: a large population of peripheral neuroglia associated with enteric neurons throughout the gastrointestinal tract. The notion that glial cells function solely as passive support cells has been refuted by compelling evidence that demonstrates that enteric glia are important homeostatic cells of the intestine. Active signalling mechanisms between enteric glia and neurons modulate gastrointestinal reflexes and, in certain circumstances, function to drive neuroinflammatory processes that lead to long-term dysfunction. Bidirectional communication between enteric glia and immune cells contributes to gastrointestinal immune homeostasis, and crosstalk between enteric glia and cancer stem cells regulates tumorigenesis. These neuromodulatory and immunomodulatory roles place enteric glia in a unique position to regulate diverse gastrointestinal disease processes. In this Review, we discuss current concepts regarding enteric glial development, heterogeneity and functional roles in gastrointestinal pathophysiology and pathophysiology, with a focus on interactions with neurons and immune cells. We also present a working model to differentiate glial states based on normal function and disease-induced dysfunctions.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Animals
  • Enteric Nervous System / cytology
  • Enteric Nervous System / physiology*
  • Gastrointestinal Diseases / drug therapy
  • Gastrointestinal Diseases / physiopathology*
  • Gastrointestinal Motility / physiology
  • Homeostasis
  • Humans
  • Neuroglia / cytology
  • Neuroglia / physiology*
  • Signal Transduction