Simultaneous measurements of 3D wall shear stress and pulse wave velocity in the murine aortic arch

J Cardiovasc Magn Reson. 2021 Mar 18;23(1):34. doi: 10.1186/s12968-021-00725-4.

Abstract

Purpose: Wall shear stress (WSS) and pulse wave velocity (PWV) are important parameters to characterize blood flow in the vessel wall. Their quantification with flow-sensitive phase-contrast (PC) cardiovascular magnetic resonance (CMR), however, is time-consuming. Furthermore, the measurement of WSS requires high spatial resolution, whereas high temporal resolution is necessary for PWV measurements. For these reasons, PWV and WSS are challenging to measure in one CMR session, making it difficult to directly compare these parameters. By using a retrospective approach with a flexible reconstruction framework, we here aimed to simultaneously assess both PWV and WSS in the murine aortic arch from the same 4D flow measurement.

Methods: Flow was measured in the aortic arch of 18-week-old wildtype (n = 5) and ApoE-/- mice (n = 5) with a self-navigated radial 4D-PC-CMR sequence. Retrospective data analysis was used to reconstruct the same dataset either at low spatial and high temporal resolution (PWV analysis) or high spatial and low temporal resolution (WSS analysis). To assess WSS, the aortic lumen was labeled by semi-automatically segmenting the reconstruction with high spatial resolution. WSS was determined from the spatial velocity gradients at the lumen surface. For calculation of the PWV, segmentation data was interpolated along the temporal dimension. Subsequently, PWV was quantified from the through-plane flow data using the multiple-points transit-time method. Reconstructions with varying frame rates and spatial resolutions were performed to investigate the influence of spatiotemporal resolution on the PWV and WSS quantification.

Results: 4D flow measurements were conducted in an acquisition time of only 35 min. Increased peak flow and peak WSS values and lower errors in PWV estimation were observed in the reconstructions with high temporal resolution. Aortic PWV was significantly increased in ApoE-/- mice compared to the control group (1.7 ± 0.2 versus 2.6 ± 0.2 m/s, p < 0.001). Mean WSS magnitude values averaged over the aortic arch were (1.17 ± 0.07) N/m2 in wildtype mice and (1.27 ± 0.10) N/m2 in ApoE-/- mice.

Conclusion: The post processing algorithm using the flexible reconstruction framework developed in this study permitted quantification of global PWV and 3D-WSS in a single acquisition. The possibility to assess both parameters in only 35 min will markedly improve the analyses and information content of in vivo measurements.

Keywords: 4D flow; Aortic arch; Atherosclerosis; Mouse; Pulse wave velocity; Radial; Self-navigation; Wall shear stress.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Animals
  • Aorta, Thoracic / diagnostic imaging*
  • Aorta, Thoracic / physiopathology
  • Aortic Diseases / diagnostic imaging*
  • Aortic Diseases / physiopathology
  • Atherosclerosis / diagnostic imaging*
  • Atherosclerosis / physiopathology
  • Blood Flow Velocity
  • Disease Models, Animal
  • Female
  • Image Interpretation, Computer-Assisted
  • Magnetic Resonance Imaging*
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout, ApoE
  • Perfusion Imaging*
  • Predictive Value of Tests
  • Pulse Wave Analysis*
  • Regional Blood Flow
  • Stress, Mechanical
  • Vascular Stiffness*