First report of grapevine virus H (GVH) in grapevine in Greece

Plant Dis. 2021 Mar 17. doi: 10.1094/PDIS-01-21-0179-PDN. Online ahead of print.

Abstract

Grapevine virus H (GVH) is a member of the genus Vitivirus in the family Betaflexiviridae (subfamily Trivirinae, order Tymovirales) that infects grapevine (Candresse et al., 2018). GVH was first identified in a symptomless grapevine of an unknown cultivar from Portugal in 2018 (Candresse et al. 2018), and since then the virus has been reported only from California (Diaz‑Lara et al. 2019). Several vitiviruses have been detected in Greek vineyards (Avgelis and Roubos 2000; Dovas and Katis 2003a; 2003b; Panailidou et al. 2019; Lotos et al. 2020), but no information was available on the presence of GVH. In the fall of 2020, in order to investigate the virome of a commercial vineyard of the cultivar Assyrtiko in northern Greece, a composite sample was made of leaves and petioles from nine vines exhibiting leafroll disease symptoms. Total RNA was extracted from the composite sample according to the protocol of White et al. (2008) and subjected to rRNA depletion, library construction (TruSeq Stranded Total RNA kit), and high-throughput sequencing (HTS) in a NovaSeq6000 platform (Illumina Inc.) at Macrogen (Korea). The resulting ~42 million 101-nt paired-end reads were analyzed in Geneious Prime 2020, and the assembled de novo contigs were subjected to a local BLASTn search, which revealed the presence of 18 grapevine infecting viruses and viroids, among which also a GVH-like contig (GeA-9). GeA-9 was 7,404 nucleotides (nt) long, covering 99.4% of the full virus genome and shared 98.2 % nt identity with a GVH isolate from the USA (MN716768). To confirm the presence of GVH, the nine samples of the cultivar Assyrtiko, used initially to produce the composite sample for HTS analysis, were tested individually by RT-PCR, using the primers GVH_F_2504 (5'-CTGCTTCGCTGAACATATGC-3') and GVH_R_2835 (5'-ATCATTRTGATCGAGAGAGTAGTG-3') that amplify a 331-nt segment of ORF1. GVH was detected in five out of the nine tested samples and one of these was reamplified and subjected to Sanger sequencing. The fragment of ORF1 obtained by Sanger sequencing (MW460005) was 97.5% identical to the nucleotide sequence of the corresponding GVH-like de novo contig (GeA-9) from HTS analysis and it shared 97.2% nt identity with GVH sequences reported from Portugal and USA, respectively (NC_040545 and MN716768), confirming the presence of GVH in the tested samples. This is the first report of GVH in grapevine in Greece, thus further increasing the number of vitiviruses known to infect Greek vineyards and also expanding the number of geographic locations in which GVH is recorded so far.

Keywords: Causal Agent; Pathogen detection; Pathogen diversity; Subject Areas; Viruses and viroids.