From allozymes to NGS: population genetics of forest trees in Slovakia in the past 40 years

Biologia (Bratisl). 2021;76(7):2043-2050. doi: 10.1007/s11756-021-00712-1. Epub 2021 Mar 12.

Abstract

This review summarizes the development of population genetics and population genomics studies of forest trees in Slovakia during the past 40 years. Various protein and DNA markers have been applied during this period to address several topics in evolutionary genetics and biogeography of trees: allozymes, uniparentally inherited chloroplast and mitochondrial markers, simple sequence repeats and single nucleotide polymorphisms. The main object of studies of phylogeny and postglacial migration were Fagus sylvatica s.l. and eastern-Mediterranean firs (Abies Mill. section Abies), where the divergence of genetic lineages (species and subspecific taxa) in time, as well as colonization of the current ranges during the Holocene were reconstructed. The studies on intraspecific gene flow and homoploid hybridization focused on hybrid swarms Pinus sylvestris/P. mugo and firs. Unusual maternal inheritance of chloroplast DNA was revealed in P. mugo × P. sylvestris crosses. Contrasting geographical structures of hybrid zones were revealed in wind-dispersed vs. animal-dispersed trees. Within the studies of adaptation, signals of selection were identified both in field observations and common-garden experiments on Picea abies, F. sylvatica and A. alba. Perspectives of ongoing research employing next-generation sequencing were shortly outlined.

Keywords: Allozymes; Forest trees; Maternally inherited markers; Microsatellites; Next-generation sequencing; Sanger sequencing.

Publication types

  • Review