Peculiar polarization response in chiral liquid crystal stacks for multispectral camouflage

Opt Express. 2021 Jan 18;29(2):2931-2939. doi: 10.1364/OE.417521.

Abstract

Chiral liquid crystals are self-organized Bragg reflectors which respond to circularly polarized light. Manipulation of the chiral structure has aroused great research interest. The x-y plane two-dimensional patterning of chiral liquid crystals leads to reflective planar optics, and the z-axis modulation results in a variety of photonic bandgap controls. Here, the optical properties of even-number left- and right-handed chiral liquid crystal stacks are investigated, with emphasis on the linear polarization response. Under certain conditions, a linearly polarized incidence can result in a linearly polarized reflected light. More intriguingly, the linear polarization has different forms of response to thick and thin chiral liquid crystal sublayers and responds to the rotation of liquid crystal alignment. Based on the peculiar polarization response, a new type of wavelength-response camouflage and anti-counterfeiting is conceptually proposed, which can hide two different images simultaneously within a small spectral range. Our work paves the way for three-dimensional manipulation of chiral liquid crystals and enlightens novel applications.