Porous carboxymethyl cellulose carbon of lignocellulosic based materials incorporated manganese oxide for supercapacitor application

Int J Biol Macromol. 2021 Jun 1:180:654-666. doi: 10.1016/j.ijbiomac.2021.03.054. Epub 2021 Mar 13.

Abstract

The present work developed porous carboxymethyl cellulose (CMC) carbon film from lignocellulosic based materials as supercapacitor electrode. Porous CMC carbon films of bamboo (B) and oil palm empty fruit bunch (O) were prepared through simple incipient wetness impregnation method followed by calcination process before incorporation with manganese oxide (Mn2O3). The carbonization produced porous CMC carbon whereby CMCB exhibited higher surface area than CMCO. After Mn2O3 incorporation, the crystallite size of CMCB and CMCO were calculated as 50.09 nm and 42.76 nm, respectively whereas Mn2O3/CMCB and Mn2O3/CMCO composite films were revealed to be 26.71 nm and 35.60 nm in size, respectively. Comparatively, the Mn2O3/CMCB composite film exhibited higher electrochemical performance which was 31.98 mF cm-2 as compared to 24.15 mF cm-2 by Mn2O3/CMCO composite film and both CMC carbon films with fairly stable cycling stability after 1000 charge-discharge cycles. Therefore, it can be highlighted that Mn2O3/CMC composite film as prepared from bamboo and oil palm fruit can potentially become the new electrode materials for supercapacitor application.

Keywords: Carboxymethyl cellulose; Porous carbon; Supercapacitor.

MeSH terms

  • Arecaceae / chemistry
  • Carbon / chemistry*
  • Carboxymethylcellulose Sodium / chemistry*
  • Cellulose / chemistry*
  • Cellulose / ultrastructure
  • Electric Capacitance
  • Electrodes
  • Lignin / chemistry*
  • Lignin / ultrastructure
  • Manganese Compounds / chemistry*
  • Microscopy, Electron, Scanning / methods
  • Microscopy, Electron, Transmission
  • Oxides / chemistry*
  • Porosity
  • Sasa / chemistry

Substances

  • Manganese Compounds
  • Oxides
  • lignocellulose
  • manganese oxide
  • Carbon
  • Cellulose
  • Lignin
  • Carboxymethylcellulose Sodium