Micro-electromechanical-system-tuned resonant filters spanning the 8-12 µm band

Opt Lett. 2021 Mar 15;46(6):1329-1332. doi: 10.1364/OL.418545.

Abstract

The spectral band covering ∼8-12µm is atmospherically transparent and therefore important for terrestrial imaging, day/night situational awareness systems, and spectroscopic applications. There is a dearth of tunable filters spanning the band. Here, we propose and demonstrate a new, to the best of our knowledge, tunable-filter method engaging the fundamental physics of the guided-mode resonance (GMR) effect realized with a non-periodic lattice. The polarization-dependent filter is fashioned with a one-dimensional Ge grating on a ZnSe substrate and interrogated with a ∼1.5mm Gaussian beam to show clear transmittance nulls. To expand the tuning range, the device parameters are optimized for sequential operation in TM and TE polarization states. The theoretical model exhibits a tunable range exceeding 4 µm, thus covering the band fully. In the experiment, a prototype device exhibits a spectral range of 8.6-10.0 µm in TM and 9.9-11.7 µm in TE polarization or >3µm total. With additional efforts in fabrication, we expect to achieve the full range.