Photoinduced charge-separated molecular probe for ultrasensitive spectrum analysis and rapid colorimetric detection of platinum ions

Anal Chim Acta. 2021 Apr 8:1153:338278. doi: 10.1016/j.aca.2021.338278. Epub 2021 Feb 3.

Abstract

Increased utilization of platinum ions in chemicals and drugs escalates environmental pollution and toxicity associated with Pt ions. However, current analysis and detection strategies of Pt ions display limited sensitivity due to the similar inert metal nature of platinum to gold. Herein, a photoinduced charge-separated molecule (MTPA)2Ab was synthesized as a probe for enhanced sensitive selection of Pt ions. Long-lived charge-separated states generated upon exposure to 365 nm light lead to a stable complex between (MTPA)2Ab and PtCl2/PtCl4 with highly-selectivity via sequential photoinduced electron transfers. Owing to the linear relationship of complex characteristic absorption and fluorescence emission intensities to Pt2+/Pt4+ concentrations, ultrasensitive spectrum analysis of Pt ions is achieved with a detection limit of 14.2 nM (2.8 ppb) for Pt2+ and 12.6 nM (2.5 ppb) for Pt4+ by an absorption spectrometer and 9.8 nM (1.9 ppb) for Pt ions (Pt2+/Pt4+) by a fluorescence spectrometer, far less than the reported values. Furthermore, a portable test box is developed based on (MTPA)2Ab test strips due to distinguishable color change with Pt2+/Pt4+ concentrations for rapid colorimetric detection of Pt ions. The results highlight the promise of photoinduced charge-separated molecular probe in ultrasensitive and rapid detection of Pt ions to overcome current limitations of detection strategies.

Keywords: Detection platinum ions; Molecular probe; Photoinduced charge-separated; Ultrasensitive spectrum analysis.