Efficient ssODN-Mediated Targeting by Avoiding Cellular Inhibitory RNAs through Precomplexed CRISPR-Cas9/sgRNA Ribonucleoprotein

Stem Cell Reports. 2021 Apr 13;16(4):985-996. doi: 10.1016/j.stemcr.2021.02.013. Epub 2021 Mar 11.

Abstract

Combined with CRISPR-Cas9 technology and single-stranded oligodeoxynucleotides (ssODNs), specific single-nucleotide alterations can be introduced into a targeted genomic locus in induced pluripotent stem cells (iPSCs); however, ssODN knockin frequency is low compared with deletion induction. Although several Cas9 transduction methods have been reported, the biochemical behavior of CRISPR-Cas9 nuclease in mammalian cells is yet to be explored. Here, we investigated intrinsic cellular factors that affect Cas9 cleavage activity in vitro. We found that intracellular RNA, but not DNA or protein fractions, inhibits Cas9 from binding to single guide RNA (sgRNA) and reduces the enzymatic activity. To prevent this, precomplexing Cas9 and sgRNA before delivery into cells can lead to higher genome editing activity compared with Cas9 overexpression approaches. By optimizing electroporation parameters of precomplexed ribonucleoprotein and ssODN, we achieved efficiencies of single-nucleotide correction as high as 70% and loxP insertion up to 40%. Finally, we could replace the HLA-C1 allele with the C2 allele to generate histocompatibility leukocyte antigen custom-edited iPSCs.

Keywords: CRISPR-Cas9; Cas9 inhibition; Cre-loxP recombination; SNP; genome editing; homozygous correction; iPSC; single nucleotide alteration.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alleles
  • Anti-Bacterial Agents / pharmacology
  • Base Sequence
  • CRISPR-Associated Protein 9 / metabolism*
  • CRISPR-Cas Systems / genetics*
  • Distal Myopathies / genetics
  • Distal Myopathies / therapy
  • Dysferlin / genetics
  • Dysferlin / metabolism
  • Exons / genetics
  • Gene Editing
  • HEK293 Cells
  • Haplotypes / genetics
  • Homozygote
  • Humans
  • Induced Pluripotent Stem Cells / metabolism
  • Muscular Atrophy / genetics
  • Muscular Atrophy / therapy
  • Muscular Dystrophy, Duchenne / genetics
  • Mutagenesis, Insertional / genetics
  • Mutation / genetics
  • Oligodeoxyribonucleotides / metabolism*
  • RNA / metabolism*
  • RNA Splicing / genetics
  • RNA, Guide, CRISPR-Cas Systems / metabolism
  • Ribonucleases / metabolism
  • Ribonucleoproteins / metabolism*

Substances

  • Anti-Bacterial Agents
  • DYSF protein, human
  • Dysferlin
  • Oligodeoxyribonucleotides
  • RNA, Guide, CRISPR-Cas Systems
  • Ribonucleoproteins
  • RNA
  • CRISPR-Associated Protein 9
  • Ribonucleases

Supplementary concepts

  • Miyoshi myopathy