Isolation, Characterization, and Application in Poultry Products of a Salmonella-Specific Bacteriophage, S55

J Food Prot. 2021 Jul 1;84(7):1202-1212. doi: 10.4315/JFP-20-438.

Abstract

Abstract: Salmonellosis occurs frequently worldwide, causing serious threats to public health. The abuse of antibiotics is increasing antibiotic resistance in bacteria, thereby making the prevention and control of Salmonella more difficult. A phage can help control the spread of bacteria. In this study, the lytic phage S55, whose host bacterium is Salmonella Pullorum, was isolated from fecal samples obtained from poultry farms. This phage belongs to the Siphoviridae and has a polyhedral head and a retraction-free tail. S55 lysed most cells of Salmonella Pullorum (58 of 60 strains, 96.67%) and Salmonella Enteritidis (97 of 104 strains, 93.27%). One-step growth kinetics revealed that the latent period was 10 min, the burst period was 80 min, and the burst size was 40 PFU per cell. The optimal multiplicity of infection was 0.01, and the phage was able to survive at pH values of 4 to 11 and temperatures of 40 to 60°C for 60 min. Complete genome sequence analysis revealed that the S55 genome consists of 42,781 bp (50.28% GC content) and 58 open reading frames, including 25 frames with known or assumed functions without tRNA genes. S55 does not carry genes that encode virulence or resistance factors. At 4 and 25°C, S55 reduced the populations of Salmonella Pullorum and Salmonella Enteritidis on chicken skin surfaces. S55 may be useful as a biological agent for the prevention and control of Salmonella infections.

Keywords: Salmonella; Bacteriophage; Complete genome sequence; Poultry product.

MeSH terms

  • Animals
  • Bacteriophages* / genetics
  • Genome, Viral
  • Poultry Products
  • Salmonella Phages* / genetics
  • Salmonella enteritidis