Structure Sensitivity of Au-TiO2 Strong Metal-Support Interactions

Angew Chem Int Ed Engl. 2021 May 17;60(21):12074-12081. doi: 10.1002/anie.202101928. Epub 2021 Apr 16.

Abstract

Strong metal-support interactions (SMSI) is an important concept in heterogeneous catalysis. Herein, we demonstrate that the Au-TiO2 SMSI of Au/TiO2 catalysts sensitively depends on both Au nanoparticle (NP) sizes and TiO2 facets. Au NPs of ca. 5 nm are more facile undergo Au-TiO2 SMSI than those of ca. 2 nm, while TiO2 {001} and {100} facets are more facile than TiO2 {101} facets. The resulting capsulating TiO2-x overlayers on Au NPs exhibit an average oxidation state between +3 and +4 and a Au-to-TiO2-x charge transfer, which, combined with calculations, determines the Ti:O ratio as ca. 6:11. Both TiO2-x overlayers and TiO2-x -Au interface exhibit easier lattice oxygen activation and higher intrinsic activity in catalyzing low-temperature CO oxidation than the starting Au-TiO2 interface. These results advance fundamental understanding of SMSI and demonstrate engineering of metal NP size and oxide facet as an effective strategy to tune the SMSI for efficient catalysis.

Keywords: facet effect; interfacial catalysis; low-temperature CO oxidation; metal-support interactions; size effect.