Norcantharidin combined with 2-deoxy-d-glucose suppresses the hepatocellular carcinoma cells proliferation and migration

3 Biotech. 2021 Mar;11(3):142. doi: 10.1007/s13205-021-02688-w. Epub 2021 Feb 25.

Abstract

Present study aims to investigate the combined effect of anticancer drug, norcantharidin (NCTD) in combination with glycolytic inhibitor, i.e. 2-deoxy-d-glucose (2-DG) in liver cancer (HepG2 and Hepa 1-6) cells. Cell viability of NCTD and 2-DG exposed cells was determined by MTT assay, whereas, colony-forming efficiency and migration rate was determined by clonogenic assay and wound healing assay, respectively. Nuclear DAPI staining and Annexin V FITC-PI staining were used to study the apoptosis induction in cells. Fluorescence microscopy imaging was performed to detect the intracellular reactive oxygen species (ROS) generation and mitochondrial membrane potential by staining with DCFDA and JC-1 dye, respectively. Cell viability assay revealed that NCTD and 2-DG exposure in combination displays more cytotoxic effect than a single drug. Additionally, cells lose their colony formation efficiency, as well as the reduced migration rate ability was also observed upon combined exposure. Increased nuclear condensation and mitochondrial membrane depolarization are considered as key features for apoptosis induction in cancerous cells. Furthermore, oxidative stress produced in cells due to enhanced intracellular ROS generation is also major probability for cellular damage. Thus, from the initial data it can be concluded that further preclinical studies will be needed to prove the efficacy of NCTD and 2-DG in hepatocellular carcinoma therapy.

Keywords: 2-deoxy-d-glucose; Anti-cancer therapeutics; Combined effect; Norcantharidin.