Combined targeting of vascular endothelial growth factor C (VEGFC) and P65 using miR-27b-3p agomir and lipoteichoic acid in the treatment of gastric cancer

J Gastrointest Oncol. 2021 Feb;12(1):121-132. doi: 10.21037/jgo-21-12.

Abstract

Background: Gastric cancer is the second leading cancer-related mortality worldwide and more effective treatment strategies are urgently needed to combat the disease. Using lipoteichoic acid (LTA) and miR-27b-3p agomir, we aimed to assess the efficacy of this combination of therapies in treating gastric cancer.

Methods: The RNA levels of miR-27b-3p, FOXO3, MET, KRAS, vascular endothelial growth factor C (VEGFC), TSC1, and P65 were analyzed by quantified-PCR (Q-PCR) and the cell viability of AGS cells was analyzed by MTT. Confirm Luciferase reporter assays were used to explore the putative miR-27b-3p binding sites and Western blot analyzed the protein level of GAPDH, VEGFC, P65, AKT, and phosphorylated-AKT (p-AKT). The level of P65 in both the cytoplasm and nucleus of AGS cells was visualized by immunofluorescence assay. Subcutaneous xenograft models of gastric cancer were established, and mice were treated with miR-27b-3p agomir, LTA, or both. Hematoxylin-eosin staining and Ki-67 immunohistochemistry analysis of tumor tissues were then performed.

Results: The results showed that the decreased expression of miR-27b-3p in gastric cancer cell lines inhibited the viability of AGS cells, and VEGFC was confirmed as the target of miR-27b-3p. In addition, ectopic expression of miR-27b-3p significantly inhibited the AKT pathway in AGS and N87 cells, and LTA suppressed the proliferation of gastric cancer cells by inhibiting the NF-κB pathway. In an established xenograft model, both miR-27b-3p agomir alone and LTA treatment alone inhibited tumor growth and treatment which combined the two showed an even stronger inhibitory effect.

Conclusions: Taken together, the combined use of LTA and miR-27b-3p agomir exhibited a synergistic effect in the treatment of gastric cancer.

Keywords: Akt; NF-κB; apoptosis; gastric cancer; miR-27b-3p; vascular endothelial growth factor C (VEGFC).