Metallic conduction through van der Waals interfaces in ultrathin [Formula: see text] films

Sci Rep. 2021 Mar 11;11(1):5742. doi: 10.1038/s41598-021-85078-9.

Abstract

While the van der Waals (vdW) interface in layered materials hinders the transport of charge carriers in the vertical direction, it serves a good horizontal conduction path. We have investigated electrical conduction of few quintuple-layer (QL) [Formula: see text] films by in situ four-point probe conductivity measurement. The impact of the vdW (Te-Te) interface appeared as a large conductivity increase with increasing thickness from 1 to 2 QL. Angle-resolved photoelectron spectroscopy and first-principles calculations reveal the confinement of bulk-like conduction band (CB) state into the vdW interface. Our analysis based on the Boltzmann equation showed that the conduction of the CB has a long mean free path compared to the surface-state conduction. This is mainly attributed to the spatial separation of the CB electrons and the donor defects located at the Bi sites.