Refining a correlative light electron microscopy workflow using luminescent metal complexes

Methods Cell Biol. 2021:162:69-87. doi: 10.1016/bs.mcb.2020.12.008. Epub 2021 Jan 23.

Abstract

The potential for increasing the application of Correlative Light Electron Microscopy (CLEM) technologies in life science research is hindered by the lack of suitable molecular probes that are emissive, photostable, and scatter electrons well. Most brightly fluorescent organic molecules are intrinsically poor electron-scatterers, while multi-metallic compounds scatter electrons well but are usually non-luminescent. Thus, the goal of CLEM to image the same object of interest on the continuous scale from hundreds of microns to nanometers remains a major challenge partially due to requirements for a single probe to be suitable for light (LM) and electron microscopy (EM). Some of the main CLEM probes, based on gold nanoparticles appended with fluorophores and quantum dots (QD) have presented significant drawbacks. Here we present an Iridium-based luminescent metal complex (Ir complex 1) as a probe and describe how we have developed a CLEM workflow based on such metal complexes.

Keywords: CLEM; Finder dishes; Imaging dishes; Luminescent metal complex; Retracing.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Coordination Complexes*
  • Electrons
  • Gold
  • Metal Nanoparticles*
  • Microscopy, Electron
  • Microscopy, Fluorescence
  • Workflow

Substances

  • Coordination Complexes
  • Gold