Neurogenic Orthostatic Hypotension. Lessons From Synucleinopathies

Am J Hypertens. 2021 Mar 11;34(2):125-133. doi: 10.1093/ajh/hpaa131.

Abstract

Maintenance of upright blood pressure critically depends on the autonomic nervous system and its failure leads to neurogenic orthostatic hypotension (NOH). The most severe cases are seen in neurodegenerative disorders caused by abnormal α-synuclein deposits: multiple system atrophy (MSA), Parkinson's disease, Lewy body dementia, and pure autonomic failure (PAF). The development of novel treatments for NOH derives from research in these disorders. We provide a brief review of their underlying pathophysiology relevant to understand the rationale behind treatment options for NOH. The goal of treatment is not to normalize blood pressure but rather to improve quality of life and prevent syncope and falls by reducing symptoms of cerebral hypoperfusion. Patients not able to recognize NOH symptoms are at a higher risk for falls. The first step in the management of NOH is to educate patients on how to avoid high-risk situations and providers to identify medications that trigger or worsen NOH. Conservative countermeasures, including diet and compression garments, should always precede pharmacologic therapies. Volume expanders (fludrocortisone and desmopressin) should be used with caution. Drugs that enhance residual sympathetic tone (pyridostigmine and atomoxetine) are more effective in patients with mild disease and in MSA patients with spared postganglionic fibers. Norepinephrine replacement therapy (midodrine and droxidopa) is more effective in patients with neurodegeneration of peripheral noradrenergic fibers like PAF. NOH is often associated with other cardiovascular diseases, most notably supine hypertension, and treatment should be adapted to their presence.

Keywords: autonomic nervous system; blood pressure; hemodynamics; hypertension; orthostatic hypotension; synucleinopathies; treatment.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Humans
  • Hypotension, Orthostatic* / physiopathology
  • Hypotension, Orthostatic* / therapy
  • Synucleinopathies