Kinetic Study of Gas-Phase Reactions of Pyruvic Acid with HO2

J Phys Chem A. 2021 Mar 25;125(11):2232-2242. doi: 10.1021/acs.jpca.0c10475. Epub 2021 Mar 11.

Abstract

Gas-phase reactions between pyruvic acid (PA) and HO2 radicals were examined using ab initio quantum chemistry and transition state theory. The rate coefficients were determined over a temperature range of 200-400 K including tunneling contributions. Six potential reaction pathways were identified. The two hydrogen abstraction reactions yielding the H2O2 product were found to have high barriers. The HO2 radical was also found to have a catalytic effect on the intramolecular hydrogen transfer reactions occurring by three distinct routes. These hydrogen-shift reactions are very interesting mechanistically although they are highly endothermic. The only reaction that contributes significantly to the consumption of PA is a multistep pathway involving a peroxy-radical intermediate, PA + HO2 → CH3COOH + OH + CO2. This exothermic process has potential atmospheric relevance because it produces an OH radical as a product. Atmospheric models currently have difficulty predicting accurate OH concentrations for certain atmospheric conditions, such as environments free of NOx and the nocturnal boundary layer. Reactions of this sort, although not necessary with PA, may account for a portion of this deficit. The present study helps settle the issue of the relative roles of reaction and photolysis in consumption of PA in the troposphere.