Morphological Analysis of the Right Ventricular Endocardial Wall in Pulmonary Hypertension

J Biomech Eng. 2021 Jul 1;143(7):074504. doi: 10.1115/1.4050457.

Abstract

Pulmonary hypertension (PH) is a chronic progressive disease diagnosed when the pressure in the main pulmonary artery, assessed by right heart catheterization (RHC), is greater than 25 mmHg. Changes in the pulmonary vasculature due to the high pressure yield an increase in the right ventricle (RV) afterload. This starts a remodeling process during which the ventricle exhibits changes in shape and eventually fails. RV models were obtained from the segmentation of cardiac magnetic resonance images at baseline and 1-year follow-up for a pilot study that involved 12 PH and 7 control subjects. The models were used to create surface meshes of the geometry and to compute the principal, mean, and Gaussian curvatures. Ten global curvature indices were calculated for each of the RV endocardial wall reconstructions at the end-diastolic volume (EDV) and end-systolic volume (ESV) phases of the cardiac cycle. Statistical analysis of the data was performed to discern if there are significant differences in the curvature indices between controls and the PH group, as well as between the baseline and follow-up phases for the PH subjects. Six curvature indices, namely, the Gaussian curvature at ESV, the mean curvature at EDV and ESV, the L2-norm of the mean curvature at ESV, and the L2-norm of the major principal curvature at EDV and ESV, were found to be significantly different between controls and PH subjects (p < 0.05). We infer that these geometry measures could be used as indicators of RV endocardial wall morphology changes. Two global parameters, the Gaussian and mean curvatures at ESV, showed significant changes at the one-year follow-up for the PH subjects (p < 0.05). The aforementioned geometry measures to assess changes in RV shape could be used as part of a noninvasive computational tool to aid clinicians in PH diagnostic and progression assessment, and to evaluate the effectiveness of treatment.

Keywords: curvature indices; pulmonary hypertension; right ventricle; shape analysis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Hypertension, Pulmonary*