Partitioning the work of breathing during running and cycling using optoelectronic plethysmography

J Appl Physiol (1985). 2021 May 1;130(5):1460-1469. doi: 10.1152/japplphysiol.00945.2020. Epub 2021 Mar 11.

Abstract

Work of breathing ([Formula: see text]) derived from a single lung volume and pleural pressure is limited and does not fully characterize the mechanical work done by the respiratory musculature. It has long been known that abdominal activation increases with increasing exercise intensity, yet the mechanical work done by these muscles is not reflected in [Formula: see text]. Using optoelectronic plethysmography (OEP), we sought to show first that the volumes obtained from OEP (VCW) were comparable to volumes obtained from flow integration (Vt) during cycling and running, and second, to show that partitioned volume from OEP could be utilized to quantify the mechanical work done by the rib cage ([Formula: see text]RC) and abdomen ([Formula: see text]AB) during exercise. We fit 11 subjects (6 males/5 females) with reflective markers and balloon catheters. Subjects completed an incremental ramp cycling test to exhaustion and a series of submaximal running trials. We found good agreement between VCW versus Vt during cycling (bias = 0.002; P > 0.05) and running (bias = 0.016; P > 0.05). From rest to maximal exercise,[Formula: see text]AB increased by 84% (range: 30%-99%; [Formula: see text]AB: 1 ± 1 J/min to 61 ± 52 J/min). The relative contribution of the abdomen increased from 17 ± 9% at rest to 26 ± 16% during maximal exercise. Our study highlights and provides a quantitative measure of the role of the abdominal muscles during exercise. Incorporating the work done by the abdomen allows for a greater understanding of the mechanical tasks required by the respiratory muscles and could provide further insight into how the respiratory system functions during disease and injury.NEW & NOTEWORTHY We demonstrated that optoelectronic plethysmography (OEP) is a reliable tool to determine ventilatory volume changes during cycling and running, without restricting natural upper arm movements. Second, using OEP volumes coupled with pressure-derived measures, we calculated the work done by the rib cage and abdomen, respectively, during exercise. Collectively, our findings indicate that pulmonary mechanics can be accurately quantified using OEP, and abdominal work performed during ventilation contributes substantially to the overall work of the respiratory musculature.

Keywords: OEP; abdominal work; exercise; respiratory kinematics; respiratory muscles.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Female
  • Humans
  • Lung Volume Measurements
  • Male
  • Plethysmography
  • Respiration
  • Running*
  • Work of Breathing*