High energy surface x-ray diffraction applied to model catalyst surfaces at work

J Phys Condens Matter. 2021 Feb 17;33(7):073001. doi: 10.1088/1361-648X/abb17c.

Abstract

Catalysts are materials that accelerate the rate of a desired chemical reaction. As such, they constitute an integral part in many applications ranging from the production of fine chemicals in chemical industry to exhaust gas treatment in vehicles. Accordingly, it is of utmost economic interest to improve catalyst efficiency and performance, which requires an understanding of the interplay between the catalyst structure, the gas phase and the catalytic activity under realistic reaction conditions at ambient pressures and elevated temperatures. In recent years efforts have been made to increasingly develop techniques that allow for investigating model catalyst samples under conditions closer to those of real technical catalysts. One of these techniques is high energy surface x-ray diffraction (HESXRD), which uses x-rays with photon energies typically in the range of 70-80 keV. HESXRD allows a fast data collection of three dimensional reciprocal space for the structure determination of model catalyst samples under operando conditions and has since been used for the investigation of an increasing number of different model catalysts. In this article we will review general considerations of HESXRD including its working principle for different model catalyst samples and the experimental equipment required. An overview over HESXRD investigations performed in recent years will be given, and the advantages of HESXRD with respect to its application to different model catalyst samples will be presented. Moreover, the combination of HESXRD with other operando techniques such as in situ mass spectrometry, planar laser-induced fluorescence and surface optical reflectance will be discussed. The article will close with an outlook on future perspectives and applications of HESXRD.